

TCEP (hydrochloride)

Cat # NB-45-00029-1g size: 1g Cat # NB-45-00029-10g size: 10g

Description

TCEP hydrochloride (Tris(2-carboxyethyl)phosphine hydrochloride) is a non-thiol reducing agent that is more stable and produces a faster S-S reductive reaction than other chemical reductants. TCEP hydrochloride is a trialkylphosphine, selectively reduces protein disuldes without altering the properties or interacting with thiol-directed agents in the reaction mixture. TCEP hydrochloride is also a commonly used reducing agent in the DNA/AuNP chemistry^{[1][2][3][4].}

Product Information

Chemical Name:

Propanoic acid, 3,3',3"-phosphinidynetris-, hydrochloride (1:1)

1. PHYSICAL AND CHEMICAL PROPERTIES

Batch Molecular Formula:	$C_9H_{15}O_6P \cdot HCI$		
Batch Molecular Weight:	286.65		
CAS No.:	[51805-45-9]		
Physical Appearance:	White to light yellow (Solid)		
Purity:	>98%		
Melting Point:	173° C		
Storage:	4°C, protect from light, stored under nitrogen		
	* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light, stored under nitrogen)		

Solvent and solubility

DMSO : 100 mg/mL (348.86 mM; Need ultrasonic) H2O : 50 mg/mL (174.43 mM; ultrasonic and adjust pH to 7 with NaOH)

For Research use only. Not for human use.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4886 mL	17.4429 mL	34.8857 mL
	5 mM	0.6977 mL	3.4886 mL	6.9771 mL
	10 mM	0.3489 mL	1.7443 mL	3.4886 mL

Please refer to the solubility information to select the appropriate solvent.

Biological activity

In vitro:

TCEP hydrochloride has been introduced which oers the prospect of serving as an alternative to the more commonly employed DTT in the NF- κ B-DNA binding reactions in vitro, using recombinant p50 protein and a 32P-labelled κ B oligonucleotide. DTT promotes NF- κ B-DNA binding in concentrations from 0.25 to 2.6 mM in binding reactions. However, in the presence of 0.25 mM DTT, inhibition of NF- κ B binding is seen only at Hg2+ concentrations greater than 100 μ M and results are highly variable. In contrast, TCEP hydrochloride promotes NF- κ B-DNA binding in a doserelated manner in concentrations from 0.25 to 6 mM. In the presence of even 6 mM TCEP hydrochloride, Hg2+ prevents NF- κ B-DNA binding at concentrations as low as 20 μ M in binding reactions ^[1].

The human lactoferrin (hLF) peptide is dissolved in phosphate buffer to a concentration of 0.1 mm. Reduction of the disulfide bonds is obtained by adding a 30-fold molar excess of TCEP hydrochloride with subsequent incubation for 2 h at 37°C ^[2].

References

- [1]. Dieguez-Acuña FJ, et al. Inhibition of NF-kappaB-DNA binding by mercuric ion: utility of the non-thiol reductant, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), on detection of impaired NF-kappaB-DNA binding by thioldirected agents. Toxicol In Vitro. 2000 Feb;14(1):7-16.
- [2]. Duchardt F, et al. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem. 2009 Dec 25;284(52):36099-108.
- [3]. Sequeira MA, et al. Modulating amyloid fibrillation in a minimalist model peptide by intermolecular disulfide chemical reduction. Phys Chem Chem Phys. 2019 Jun 5;21(22):11916-11923.
- [4]. Wu R, et al. Effects of Small Molecules on DNA Adsorption by Gold Nanoparticles and a Case Study of Tris(2carboxyethyl)phosphine (TCEP). Langmuir. 2019 Oct 15;35(41):13461-13468.

For Research use only. Not for human use.