Proteins

Product Data Sheet

Gabazine

Cat. No.: HY-103533 CAS No.: 104104-50-9 Molecular Formula: $C_{15}H_{18}BrN_3O_3$

Molecular Weight: 368.23

Target: **GABA Receptor**

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro H₂O: 100 mg/mL (271.57 mM; Need ultrasonic)

DMSO: $\geq 75 \text{ mg/mL} (203.68 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7157 mL	13.5785 mL	27.1569 mL
	5 mM	0.5431 mL	2.7157 mL	5.4314 mL
	10 mM	0.2716 mL	1.3578 mL	2.7157 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 7.14 mg/mL (19.39 mM); Clear solution; Need ultrasonic and warming and heat to 60°C
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.79 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.79 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.79 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Gabazine is a selective and competitive antagonist of GABA _A receptor, with an IC $_{50}$ of \sim 0.2 μ M for GABA receptor.		
IC ₅₀ & Target	$0.2\mu M$ (GABA receptor) $^{[1]}$.		
In Vitro	Both bicuculline and Gabazine (SR 95531) have been characterized as competitive inhibitors of GABA binding to the GABA _A		

receptor. Gabazine is more potent than bicuculline at blocking currents elicited by GABA, with an IC $_{50}$ for currents elicited by 3 μ M GABA of \sim 0.2 μ M and a Hill coefficient of 1.0. Gabazine reduces the currents elicited by 10 μ M alphaxalone by \sim 30%, for responses of receptors containing wildtype β 2 subunits. The concentration of Gabazine requires producing half the maximal block is \sim 0.2 μ M. Gabazine also could only produce a partial block of currents gated by 300 μ M pentobarbital. The maximal reduction, again, is \sim 30%, and the concentration of Gabazine required to produce half the maximal block is \sim 0.15 μ M^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nature. 2025 Sep 10.
- Nat Neurosci. 2023 May;26(5):751-764.
- Phytomedicine. 2022 Jan 29;98:153965.
- Elife. 2024 May 29.
- iScience. 2023 Mar 3;26(4):106322.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Ueno S, et al. Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAA receptor. J Neurosci. 1997 Jan 15;17(2):625-34.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite F, Monmouth Junction, NJ 08852, USA